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SUMMARY

A model of a simple parallel-shaft, spur-gear transmission is presented.
The model is developed to simulate dynamic loads in power transmissions. Fac-

r tors affecting these loads are identified. Included are shaft stiffness and
' inertia, load and power source inertia, tooth geometry, tooth stiffness, local

compliance due to contact stress, load sharing, and friction. Governing dif-
ferential equations are developed and a solution procedure is outlined. A
parameter study of the solutions is presented in NASA TM-100181 (AVSCO
TM-87-C-3).

INTRODUCTION

Recently, there has been increased interest in the dynamic effects in
gear systems. This interest is stimulated by demands for stronger, higher
speed, improved-performance, and longer lived systems. This in turn has stimu-_•
lated numerous research efforts directed toward understanding gear dynamic phe-
nomena. However, many aspects of gear dynamics are still not satisfactorily
understood.

For example, in industrial settings, a high performance gear system is n-.or
often obtained by overdesigning, and by sacrificing costs, materials, and com- ,V
pactness. In aerospace and military application where weight is a premium, 'T

gear systems are often designed under conditions very close to the failure lim-
its, thereby introducing uncertainties in performance and life prediction.
They are often prematurely replaced to prevent in-service failure. Moreover,
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gear systems are often designed by using static analyses. However, when gear
systems operate at high speed, there are several factors which affect their
performance. These include shaft torsional stiffness, gear tooth loading and
deformation, gear tooth spacing and profile errors, rotating speeds, mounting
alignment, dynamic balance of rotating elements, gear and shaft masses and
inertia, and the masses and inertias of the driving (power) and driven (load)
elements.

There is no agreement among researchers on the best methods for eialu-
ating dynamic load effects. Hence, gear designers are often confronted with
conflicting theories. They generally have to rely on past experience, service
safety factors, and experimental data with a limited range of applicability.

The objective of this report and NASA TM-100181 (AVSCOM TM-87-C-3) is to
provide more insight into the factors affecting dynamic loads.

Research efforts on gear system dynamics have been conducted for many
years. In 1892 Lewis (ref. 1) recognized that the instantaneous tooth load
was affected by the velocity of the system. In 1925, Earl Buckingham (ref. 2)
headed an experimental research effort, endorsed by ASME, to measure dynamic
effects. A report published in 1931 represented the first authoritative docu-
ment on gear dynamics. It presented a procedure for determining the so-called
dynamic load increment due to mesh dynamics and gear tooth errors.

In 1959, Attia (ref. 3) performed an experiment to determine actual
instantaneous loading. He found that Buckingham's results were conservative.

In 1958, Niemann and Rettig (ref. 4) found that larger masses caused
higher dynamic loads, but as the average load became larger the effect of •
larger masses became less important. They also found that very heavily loaded
gear systems showed no appreciable dynamic load increment, whereas in lightly
and moderately loaded gear systems there were considerable dynamic load incre-
ments. In 1958, Harris (ref. 5) suggested that for gear systems isolated from
external stimuli, there are three internal sources of dynamic loads as follows:

(1) error in the velocity ratio measured under the working load

(2) parametric excitation due to stiffness variation of the gear teeth

(3) nonlinearity of tooth stiffness when contact is lost

In 1970, Houser and Seireg (ref. 6) developed a generalized dynamic factor for-
mula for spur and helical gears operating away from system resonances. The
formula took into consideration the gear geometry and manufacturing parameters
as well as the dynamic characteristics of the system.

In 1972, Ichimaru and Hirano (ref. 7) analyzed heavy-loaded spur-gear sys-
tems with manufacturing errors under different operating conditions. They
found that the change in tooth profile showed a characteristic trend to
decrease dynamic load. In 1978, Cornell and Westervelt (ref. 8) presented a
closed form solution for a dynamic model of spur-gear system and showed that
tooth profile modification, system inertia and damping, and system critical
speeds, can have significant effects upon the dynamic loads. In 1981, Kasuba
and Evans (ref. 9) presented a large scale digitized extended gear modeling
procedure to analyze spur-gear systems for both static and dynamic conditions.
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Their results indicated that gear mesh stiffness is probably the key element
in the analysis of gear train dynamics. They showed that the gears and the
adjacent drive and load systems can be designed for optimum performance in
terms of minimum allowable dynamic loads, for a wide range of operating speeds.

In 1981, Wang and Cheng (ref. 10) developed another dynamic load response %
algorithm. They reported that the dynamic load is highly dependent on the ,-
operating speed. This model is later modified by Lewicki (ref. 11) to account
for the nonlinear Hertzian deformation of meshing gear teeth. The gear dynamic
load found from the revised model showed little difference from the original
model since the Hertzian deflection was relatively small in comparison with

the total gear tooth deflection. Nagaya and Uematsu (ref. 12) stated that
because the contact point moves along the involute profile, the dynamic
response should be considered as a function of both the position and speed of

the moving load. In 1982, Terauchi, et al., (ref. 13) studied the effect of
tooth profile modifications on the dynamic load of spur-gear systems. Accord- 0
ing to their results, the dynamic load decreased with proper profile
modification-,.

In this first part of the paper, we present a model of a parallel shaft
transmission. We consider the effects of shaft stiffness and inertia, load
and power source inertias, tooth stiffness, local compliance due to contact S
stresses, load sharing, and friction. A parameter study is provided in the
second part of the paper.

NOMENCLATURE

Ai cross section area of ith element of gear teeth, mm2 (in.
2 )

Cg damping coefficient, gear tooth mesh, N-sec (lb-sec)

Cs  damping coefficient of shaft, N-m-sec (in.-lb-sec)

Ee effective modulus of elasticity, N/m2  (lb/in. 2 ) -

F tooth face width, mm (in.)

G shear modulus, N/m2  (lb/in. 2 )

second moment of inertia of ith element of gear teeth, mm2 (in.2 )

JL polar moment of inertia of load, m2-kg

JM polar moment of inertia of motor, m2-Kg
polar moment of inertia of motorI, m2-Kg

polar moment of inertia of gear 1, m2-Kg

J2 polar moment of )ertia of gear 2, m2-KgON

Kg stiffness of gear tooth, N-m/rad r.

KS  stiffness of shaft, N-m/rad

3'

3 "%

-. ... - -a- ...- *.. .. *. -. ... . . . .- .. .. .,... .......-.- , '. :' _' .' . " " .'...



Lij distance between elements i and j, mm

qb gear tooth deformation due to beam deflection, mm

qc gear tooth deformation due to contact deformation, mm

qf gear tooth deformation due to foundation flexibility, mm

q=qb+qf+qc total gear tooth deformation, mm (in.)

Rb base radii of gears, mm (in.)

Rp pitch radii of gears, mm

ti  thickness of element i, mm

TL torque on load, N-m 0
rp

TM torque on motor, N-m

Tfl torque on gear 1, N-m

Tf2  torque on gear 2, N-m

Vs1  sliding velocity during tooth mesh, mm/sec

VR rolling velocity, mm/sec

W applied load, N/m (Ib/in.)

ix-coordinate of element i, mm (in.)

y xi  y-coordinate of element i, mm (in.)

(3 load angle, rad 0

8 backlash, mm (in.)

e angular displacement, rad

8 angular velocity, rad/sec

angular acceleration, rad/sec
2

Po lubricant viscosity, N-sec/m
2  (lb-sec/in. 2 )

v Poisson's ratio

damping ratio

MODELING

Figure 1 depicts a model of the transmission. It consists of a motor or
power source connected by a flexible shaft to the gear system. The gear sys-
tem consists of a pair of involute spur gears. They are connected to the load
4
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by a second flexible shaft as shown. Symbolically, the model may be repre- .
sented by a collection of masses, springs, and dampers as in figure 2.

Let 1M, 1 , 02, and EL represent the rotations of the motor, the
gears, and the load. Then by using standard procedures of analysis, the gov-
erning differential equations for the rotations may be written as

JMeM + Csl(eM - 01) + KSI(OM - 01) = TM (1)

J11+ Cs1(O1  OM) + Ks( 1  EM ) + Cg(t)[RblOl - Rb202]

+ Kg(t)[Rbl(RblOl - Rb202)] = Tfl(t) (2)

90

J202 + Cs2(02- 01) + Ks2(02 - 01) + Cg(t)[Rb262 - RblOl]

+ Kg(t [Rb2(Rb202 - RbIOl)] = Tf2(t) (3)

JLOL + Cs2(OL - 02 ) + Ks2(OL - 02) = -TL (4)

where JM, Jl, J2, and JL represent the mass moments of inertia of the
motor, the gears, and the load; Csl, Cs2, and C (t) are damping coefficients
of the shafts and the gears; Ksl, Ks2, and Kg(t? are stiffnesses of the
shafts and the gears; TM, TL , Tfl(t), and Tf2 (t) are motor and load torques
and frictional torques on the gears; Rbl and Rb2 are base circle radii of
the gears; t is time; and the dots over 0 indicate time differentiation.

In developing equations (1) to (4) several simplifying assumptions are
employed:

(1) The dynamic process is studied in the rotating plane of the gears. %

Out-of-plane twisting and misalignment are neglected.

(2) Damping due to lubrication of the gears and shafts is expressed in
terms of constant damping factors.

(3) The differential equations of motion are developed by using the theo-
retical line of action. •

(4) Low contact ratio gears are used in the analysis. Specifically, the
contact ratio is taken between 1 and 2.

ANALYSIS

A major task in the analysis is to determine the values of the stiffness,
damping, and friction coefficients appearing in equations (1) to (4). Another
task is to determine the ratio of load shar ing between the teeth during a mesh
cycle. These factors depend on the roll angle of the gears. Thus, equations
() to (4) are made nonlinear by these terms.
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Stiffness

Gear stiffness. - Consider first the stiffness coefficients kg, ks] ,
and ks2 . Let the tooth surface have the form of an involute curve. Let Nj
be the transmitted load at a typical point j of the tooth profile. Let qj
be the deformation of the tooth at point j in the direction of Nj. Then
the gear stiffness kgj for the gear teeth in contact at j is

N.
k . _ .-1 (5)
gj q

In general qj will depend on the following: (1) the bending of the
tooth, the shear deformation of the tooth, and the axial compression of the
tooth; (2) the deflection due to the flexibility of the tooth foundation and

fillet; and (3) the local compliance due to the contact stresses.

To determine qj let the tooth be divided into elements as shown in
figure 3. Let i be a typical element with thickness Ti, cross section
area Ai, and second moment of inertia Ii. Let Lij be the distance between
element i and point j along the x-axis. Let j be the angle between
Nj and the y-axis. (See fig. 3.)

Consider the tooth to be a nonuniform cantilever beam. Let qbj be the
contribution to qj by the bending, shear, and axial deformation of the
tooth. Then qbj may be represented as the sum of the deformation in the ele-
ments i beneath point j. That is,

n

qbj = bij (6)

i=l

where n is the number of elements beneath j and qbij is the deformation
of element i due to the load Nj.

Nith standard analysis qbij is found to have the value (refs. 8, 14,
and 15):

q (kJ./E co2jT3+ 3T. 2 L. + 3T. L /31H
bij = e i i ij 1 ij

cos (3 sin , (T.Y + 2TY.L j)/21.l

+ c [12(l + v)Ti/5A d + sini Ti/A i)  (7)

where Yi is the half-tooth thickness at element i (see fig. 3), v is
Poisson's ratio, and Ee is the "effective elastic modulus" depending upon
whether the tooth is wide (plane strain) or narrow (plane stress). Specifi-
cally, for a "wide" tooth, where the ratio of the width to thickness at the
pitch point exceeds 5 (ref. 14). Ee is

6 I



E E 2(8)
eVe (l -v

2)

where E is Young's modulus of elasticity. For a "narrow" tooth (width-to-

thickness ratio less than 5), Ee is

Ee = E (9)

Expressions similar to equations (7) hold for qfj the contribution to
qj for the deformation due to the flexibility of the ooth fillet and founda-
tion (ref. 15).

Let qcj be the contribution to q" from the local compliance due to
contact stresses. With the procedures o Lundberg and Palmgren (ref. 16) qcj
may be expressed as

q 1.275 (10)
E .9FO.8w.O.1
E F~ W.1~J

where F is the width of the tooth.

Hence, by superposition, the deformation at j in the direction of Wj

is

qj = qbj + qfj + qcj(11)

The above expressions were used to calculate the deformations for two dif-
ferent gear pairs. The results are shown graphically in figures 4(a) and (b).

Shaft stiffness. - The shaft stiffness Ks is given by the standard
expression

JG
K - (12)s

where G is the shear modulus, Q is the shaft length, and J is the polar

moment of area given by

D4

J - 32 (13)!where D is the shaft diameter. I

Damping

Shaft damping. - Next consider the damping coefficients Csl, Cs2 , and
Ca. Damping in the shafts is due to the shaft material. In equations (1) to
(4) the coefficients Csl and Cs2  are taken to have the form

4 7



112
Ks

Csl = 2  s 1 1 (14)

and
1 1I/2

Cs2 = 2s 1s2 1  (15)

where s represents the damping ratio. Experiments have shown that s has
values between 0.005 and 0.075 (ref. 17).

Mesh damping. - Similarly, the effect of damping of the gear mesh is
taken as

.1/2

K R2 R2 33J
C =2 bl b2 1 2 (16)

RblJ1 + R 2J2

where, as before, is the damping ratio. Measurements have shown to
have values between 0.03 and 0.17 (refs. 9 and 10).

Friction. - Equations (1) to (4) contain terms Tfl and Tf2  which rep-
resent the frictional moments of the driving and driven gears. These moments
occur because of the relative sliding of the gear teeth. Buckingham (ref. 18)
has recorded a semiempirical formula for the friction coefficient f of
boundary lubrication as

f = O.05eO.12 5s+ o-o---(17)
f 0 0 e+ 0 002 VS ( 7"'

where Vs is the sliding speed measured in in./sec. An analogous expression
for elastohydrodynamic lubrication has been developed by Beneaict and Kelly
(ref. 19) and by Anderson and Loewenthal (ref. 20) as follows: •

f 0.0127 log 45.94 W/FPoVV (18)

where

W the applied load, N/m (lb/in.)

F face width, mm (in.)

VR rolling velocity, mm/sec (in./sec)

Po lubricant viscosity, N-sec/m
2  (lb-sec/in. 2 )

8 0
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Figures 5(a) and (b) show graphs of the friction coefficient as given by
equations (17) and (18) as a function of the roll angle. Figures 6(a) and (b)
show the resulting effect upon the friction torque.

Mesh Analysis

Figure 7 illustrates the motion of a pair of meshing teeth. The initial
contact occurs at A, where the addendum circle of the driven gear intersects

the line of action. As the gears rotate the point of contact will move along
the line of action APD. When the tooth pair reaches B, the recessing tooth
pair disengages at D leaving only one zone. When the tooth pair reaches
point C, the next tooth pair begins engagement at A and starts another
cycle.

In the analysis, the position of the contact point of the gear teeth
along the line of action is expressed in terms of roll angles of the driving
gear tooth.

Figure 8 shows typical stiffness and load sharing characteristics through
a mesh cycle. Let a series of mating tooth pairs be denoted as a, b, c, d
and let points A, B, P, C, D be the same as those in figure 7. Then, AB
and CD represent the double contact regions, BC represents the single con-
tact region, and as before P is the pitch point.

The stiffness values at double contact regions are clearly much higher
than those at single contact regions. When gears rotate at appreciable speed,
this time-varying stiffness as shown in figure 8 is the major excitation
source for the dynamic response of the system.

DISCUSSION

The objective of this analysis is to establish the governing differential
equations and to present a procedure for solution. As noted, the equations
themselves are nonlinear. However, they may be efficiently solved by using a
linearized-iterative procedure as follows:

The linearized equations may be obtained by dividing the mesh cycle into
n equal intervals. Let a constant input torque TM be assumed. Let the out- •
put torque TL be fluctuating because of damping in the gear mesh, because of
friction, and because of time-varying mesh stiffness.

Let initial values of the angular displacements be obtained by preloading
the input shaft with the nominal torque carried by the system. Initial values
of the angular speeds may be taken from the nominal operating speed of the ,
system.

The iterative process is then as follows: the calculated values of the
angular displacements and angular speeds after one period are compared with
the assumed initial values. Unless the differences between them are suffi-
ciently small, the procedure is repeated by using the average of the initial 5
and calculated values as new initial values.
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Finally, observe that the term (Rblel - Rb2e2 ) in the equation of motion
represents the relative dynamic displacement of the gears. Let S represent
the backlash. Let gear 1 be the driving gear. The following conditions can
occur

Case 1 

The normal operating case is

Rblel - Rb2e2 > 0 (19)

The dynamic mesh force F is then

F = Kg(t)(Rblel - Rb2O2) + Cg(t)(Rblel - Rb2e2) (20)

Case 2

Rblel - Rb2O2 0 and Rblel - Rb2e2I S (21)

In this case, the gears will separate and the contact between the gears will S
be lost. Hence,

F = 0 (22)

Case 3

Rblel - Rb2e2 < 0 and IRblel - Rb2e21 > S (23)

In this case, gear 2 will collide with gear 1 on the backside. Then,

F Kg(t)[(Rb2e2 - Rble ) - S] + Cg(t)(Rblel - Rb2e2) (24)

CONCLUSION

A low contact ratio spur-gear transmission model is developed. The model
includes inertias of load and power source, stiffness of shaft, time-varying
mesh stiffness, and damping and friction inside gear transmissions.

Governing equations of the model are derived and a linearized iterative
procedure for solution is presented. Parameter study including rotating
speed, diametral pitch, applied load, damping, stiffness, and inertia will be
presented in NASA TM-100181 (AVSCOM TM-87-C-3).
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